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1. Griffiths 4.10

(a) The surface bound charge is just σb = ~P (R) · r̂ = k~r · r̂ = kR, while the volume bound charge is

ρb = −∇ · ~P = − 1
r2

∂

∂r

(
r2 ~P · r̂

)
= − 1

r2

∂

∂r

(
r3k

)
= −3k. (1)

(b) Using the fact that we have no free charge in the region r < R, we know that ~D(r) = ε0 ~E(r) + ~P = 0
there, so we find ~E(r < R) = − 1

ε0
~P = − k

ε0
~r. Now, by spherical symmetry, the field outside only depends

on the total charge enclosed. This is easy to compute,

QT =
4
3
πR3ρb + 4πR2σb =

4
3
πR3(−3k) + 4πR2(kR) = 0. (2)

Thus, the electric field vanishes outside, ~E(r > R) = 0.

2. Griffiths 4.16

(a) We can think of the cavity as a spherical ball of material carrying a fixed constant polarization of −~P

placed within the dielectric. Now, the electric field of such a spherical ball is uniform and given by equation
4.14 of Griffiths, ~EB = − 1

3ε0
(−~P ). Thus, the electric field in the cavity is the sum of this electric field

and that of the dielectric,
~E = ~E0 + ~EB = ~E0 +

1
3ε0

~P . (3)

Since, in this region, the polarization is actually zero, we know that the displacement is just,

~D = ε0 ~E = ε0 ~E0 +
1
3

~P = ~D0 − ~P +
1
3

~P = ~D0 −
2
3

~P . (4)

(b) For a needle shaped cavity parallel to ~P , the only bound charge is associated with positive and negative
charges at the ends. But if the needle is thin and long, these are small and far away from the center of the
cavity, and don’t really effect the electric field there. Thus, we expect that ~E = ~E0 and ~D = ε0E0 = D0− ~P .

(c) Finally, for a thin wafer shaped cavity, the bound surface charges on the top and bottom surfaces of
the wafer are equal in magnitude to the polarization and of opposite signs, and so the wafer is just like
a capacitor. Since the magnitude of the electric field of a capacitor is just E = σ

ε0
, and points in the

direction of the polarization vector, we find that the electric field in the wafer is just,

~E = E0 +
~P

ε0
. (5)

Thus, the electric displacement is just,

~D = ε0 ~E = ε0E0 + ~P = ~D0. (6)

3. Griffiths 4.36

(a) Since we have spherical symmetry for r > R in the absence of the dielectric, the candidate potential
outside the conducting ball must just be a Coulomb potential with the property that V (R) = V0. Thus,
we must have that,

V (r > R) =
V0R

r
. (7)
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Now, we can easily compute the electric field everywhere,

~E(r > R) = −∇V (r > R) =
V0R

r2
r̂. (8)

Further, we can compute the polarization in the region r < 0 by using the susceptibility,

~P (r > R, z < 0) = χeε0 ~E(r > R) =
χeε0V0R

r2
r̂. (9)

The bound charges densities can be computed using the polarization, noting that because the polarization
is radially directed, there is no surface bound charge along the boundary of the dielectric material and
vacuum for r > R,

σb(r = R, z < 0) = ~P (r = R, z < 0) · n̂ = ~P (r = R, z < 0) · (−r̂) = −χeε0V0

R
, (10)

ρb(r > R, z < 0) = −∇ · ~P (r > R, z < 0) = − 1
r2

∂

∂r

(
r2 χeV0R

r2

)
= 0. (11)

Thus, we see that not only is there no bound surface charge for r > R, but there is no volume bound
charge there either. Finally, we can use Gauss’s Law to compute the total charge density on the sphere

Q = ε0

∫
~E · d~a = 4πε0V0R ⇒ σ(r = R) =

Q

4πR2
=

ε0V0

R
. (12)

Thus, the free surface charge densities on the upper and lower halves of the sphere are given by,

σf (r = R, z > 0) = σ(r = R) =
ε0V0

R
, (13)

σf (r = R, z < 0) = σ(r = R)− σb(r = R, z < 0) =
ε0V0

R
(1 + χe). (14)

(b) Note that the total surface charge density is σ above, which is indeed uniform, and the potential of a
uniformly charged sphere is precisely,

V (r) =
Q

4πε0r
=

σ4πR2

4πε0r
=

V0R

r
. (15)

(c) Since the above solution obeys all the right boundary conditions and the total charge obeys the spherical
symmetry, we can apply the theorem.

(d) Figure (a) does not work the same way as the above problem since there is bound charge on the surface
away from the conducting ball, as n̂ is not perpendicular to ~P on the dielectric boundary. However, one
can solve the problem of Figure (b) in the same way since it is still the case that ~P is perpendicular to
the dielectric boundary.

4. Griffiths 5.56

(a) If the angular momentum of the donut is ω, the current carried by the donut is just I = Qω
2π . If R is

the radius of the donut, the magnetic moment is m = πR2I = QωR2

2 . The magnitude of the angular
momentum of the donut is just L = MR2ω. Thus, the gyromagnetic ratio is,

g =
m

L
=

Q

2M
. (16)

(b) Since the ratio is independent of radius, and both the magnetic moment and angular momentum are found
by summing over donuts of various radii, the sphere will have the same gyromagnetic ratio as any of the
infinitessimal donuts it is composed of.
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(c) Assuming that the electron can be modelled as a spinning solid of revolution, the magnetic dipole moment
of the electron is thus,

m = gL =
e(~/2)
2me

=
(1.6× 10−19C)× (1.054× 10−34J · s)

4× 9.11× 10−31kg
= 4.61× 10−24A ·m2. (17)

5. Griffiths 6.12

(a) Let’s compute all the bound currents,

~Kb(s = R) = ~M × n̂ = kRẑ× ŝ = kRφ̂ (18)

~Jb(s < R) = ∇× ~M = − ∂

∂s
(ks)φ̂= −kφ̂. (19)

Now, due to the cylindrical symmetry we expect that ~B = B(s)ẑ points along the ẑ direction inside
the cylinder. Further, as we can think of this as infinitely many concentric solenoids, the magnetic field
vanishes outside. Thus, using the usual Amperian loop for solenoids,∫

~B·dl = B(s < R)l = µ0Ienc = µ0(
∫

~Jb·d~a+Kbl) = µ0(−k(R−s)l+kRl) = µ0ksl ⇒ ~B(s < R) = µ0ksẑ.

(20)

(b) Since we have no free currents, and as, by symmetry, ~H must also point in the ẑ direction, the above
Amperian loop shows that

∫
~H · d~l = Hl = If = 0, so H = 0. Thus, we have that ~B = µ0

~M inside, so
~M = ksẑ there while ~B = ~M = 0 outside.

6. Griffiths 6.25

(a) We need to compute the magnetic field due to the donut on the bottom evaluated at the position of the
donut above it along the ẑ axis. As we are treating the donut magnets as dipoles with ~m = mẑ, this is
just Griffiths 5.86 with θ = 0, ~B = µ0

4π
2m
z3 ẑ. Now, the interaction energy of the two dipoles can be easily

computed and related to the force on the upper magnet (as the magnets are back to back, ~m = −mẑ),

U = −~m · ~B =
µ0

2π

m2

z3
⇒ ~F = −∇U = − ∂

∂z

(
µ0

2π

m2

z3

)
ẑ =

3µ0

2π

m2

z4
ẑ. (21)

This upward force is balanced by gravity when,

F = mdg =
3µ0

2π

m2

z4
⇒ z =

(
3µ0

2π

m2

mdg

)1/4

. (22)

(b) Adding a third magnet parallel to the first and letting x be the distance between the first magnet and the
second and y be the distance between the second and the third, we note that the top magnet is repelled
upwards by the second while attracted downwards by the first,

3µ0

2π

m2

y4
− 3µ0

2π

m2

(x + y)4
−mpg = 0. (23)

The middle magnet is instead repelled upwards by the first magnet and downwards by the third,

3µ0

2π

m2

x4
− 3µ0

2π

m2

y4
−mpg = 0. (24)

Subtracting the first from the second, we get,

1
x4
− 2

y4
+

1
(x + y)4

= 0⇒ 2 =
1

(x/y)4
+

1
(x/y + 1)4

⇒ x/y ≈ 0.85, (25)

where we just guessed and checked to find the approximate solution.
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7. Griffiths 7.10 The induced emf is just,

E = −∂ΦB

∂t
= − ∂

∂t

(
(Bx̂) · (a2)(cos ωtx̂ + sinωtŷ)

)
= − ∂

∂t

(
Ba2 cos ωt

)
= Bωa2 sinωt. (26)

8. Griffiths 7.14 We suppose the magnet is oriented such that the magnetic field above it is positive (so the
bound currents which are responsible for it are moving counterclockwise). As the bar magnet falls, each ring
of aluminum pipe below it experiences an increasing upward magnetic flux while each ring above it experiences
an increasing downward magentic flux (note that there is no change in flux for rings along the magnet, as
the magnetic field is nearly constant inside the magnet and hence no induced currents in them). The induced
currents in each of these rings attempt to oppose this change in flux. Thus, the ring below will carry a clockwise
current, while the ring above carries a counterclockwise current. Since opposite currents repel eachother while
similar currents attract, the ring below repels the magnet upwards while the ring above attracts the magnet
upwards. The net result is that the eddy currents induced by the magnet tend to delay the fall of the magnet.

9. Griffiths 7.43

(a) In order to get the perpendicular component of the magnetic field to vanish at the boundary, we take
a configuration in which identical poles are close to eachother and thereby repel eachother. This means
that the image magnetic dipole must be oriented in the opposite direction as the original dipole, in the
−ẑ direction.

(b) The force here is just the force on the original dipole due to the image dipole, which is a distance r = 2h

away. This force is easily obtained by noting that ~F = ∇(~m · ~B), where ~B is the magnetic field due to the
image dipole (Griffiths 5.87) evaluated at the position of the original dipole, giving us,

F =
3µ0

2π

m2

(2h)4
⇒ F = Mg ⇒ h =

1
2

(
3µ0m

2

2πMg

)1/4

. (27)

(c) Using Griffiths 5.87 and adding the contributions of both dipoles at a point on the surface of the super-
conductor a distance r away from the origin, we find,

~B = −3µ0mh

2π

r

(r2 + h2)5/2
r̂. (28)

The boundary conditions tell us that ~B = µ0( ~K × ẑ). Taking ẑ× this, we find,

~K =
1
µ0

ẑ× ~B = −3mh

2π

r

(r2 + h2)5/2
φ̂. (29)

10. Griffiths 8.11

(a) We simply use the results for a uniformly charged, spinning shell which are given in Griffiths equation
5.68 and problem 5.36, with σ = e

4πR2 , and m = 4
3πσωR4,

~E(r < R) = 0, (30)

~B(r < R) =
2
3
µ0σRωẑ (31)

~E(r > R) =
1

4πε0

e

r2
r̂, (32)

~B(r < R) =
µ0

4π

m

r3
(2 cos θr̂ + sin θθ̂). (33)

Now, we just use the fact that the electromagnetic energy density is given by,

uem(r > R) =
1
2

(
ε0E

2 +
1
µ0

B2

)
=

e2

32π2ε0r4
+

µ0e
2ω2

72π2R2
, (34)

uem(r < R) =
µ0e

2ω2R4

18(16π2)r6
(3 cos2 θ + 1). (35)
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Integrating over all space, we find,

Uem =
1

8πε0

e2

R
+

µ0e
2ω2R

36π
. (36)

(b) As both the electric and magnetic fields are non-zero only in the region r > R, we find a non-vanishing
angular momentum density there of magnitude,

`(r > R) = ε0~r × ( ~E × ~B) =
µ0em

(4π)2r4
r̂× (r̂× θ̂) sin θ = − µ0em

(4π)2r4
sin θθ̂. (37)

Integrating this over the region r > R and noting that we only expect that the ẑ component will survive
as θ̂z = − sin θ, we find,

~L =
∫

`dτ =
2πµ0em

(4π)2
ẑ

∫ π

0

sin3 θdθ

∫ ∞

R

1
r2

dr =
8πµ0em

3R(4π)2
ẑ =

µ0e
2ωR

18π
ẑ. (38)

(c) Now, we are asked to assume,

L =
µ0e

2ωR

18π
=

~
2
⇒ ωR =

9π~
µ0e2

≈ 9.23× 1010m/s. (39)

Now, if we further assume that the the electrostatic interaction energy accounts for the mass and plug in
the above result, we can compute R,

Uem =
1

8πε0

e2

R

[
1 +

2
9

(
ωR

c

)2
]

= mc2 ⇒ R ≈ 2.95× 10−11m (40)

Thus, ω = ωR/R ≈ 3.13×1021s−1. Clearly, since ωR, the velocity of a point on the equator of the sphere,
is 300 times greater than that of light, this is a horribly unrealistic model.

11. Griffiths 9.19

(a) For the case of a poor conductor, we know that β = σ
εω � 1, and that the imaginary part of k̃ = k + iκ is

given by Griffiths 9.126 to be,

κ =
ωs

v
=

ω

v

√√
1 + β2 − 1

2
≈ ω

v

√
1 + β2

2 − 1
2

=
ωβ

2v
=

ωσ
√

εµ

2ωε
=

σ

2

√
µ

ε
. (41)

The skin depth, the distance after which the amplitude decreases by factor of e, is just the distance such
that the real argument of the exponential is one, which is just when,

∆z =
1
κ

=
2
σ

√
ε

µ
. (42)

For pure water, ε = 80.1ε0, µ ≈ µ0, and σ ≈ 1/(2.5× 105), so we get d ≈ 1.19× 104 meters.

(b) The skin depth in the good conductor limit, β � 1, i.e. σ � εω is,

∆z−1 = κ =
ωs

v
=

ω

v

√√
1 + β2 − 1

2
≈ ω

v

√
β

2
= ω

√
εµ

√
σ

2εω
=

√
σωµ

2
. (43)

Note that in this limit, Griffiths 9.126 shows that k ≈ κ, so we have, k ≈
√

σωµ
2 , so this means that the

skin depth is really just,

∆z−1 =
√

σωµ

2
=

2π

λ
. (44)

For ω = 1015s−1, µ ≈ µ0, and σ ≈ 107 for a good conductor, we have d ≈ 13 nanometers. Thus, light can
hardly penetrate a good conductor.
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(c) From Griffiths 9.134, and the fact that κ ≈ k, we know φ ≈ tan−1(1) ≈ 45◦. By Griffiths 9.137, we find
that the ratio of the magnitude of the electric and magnetic fields is,

B0

E0
=

√
εµ

√
1 +

( σ

εω

)2

≈
√

σµ

ω
. (45)

Evaluating this for a typical metal (i.e. for the parameters used in the previous problem), we get B0
E0
≈ 10−7

m/s.

12. Griffiths 11.21

(a) We can think of the oscillating charged particle as an oscillating electric dipole of magnitude p0 = qd,
and a frequency given by ω =

√
k/m. As we are not interested in the total power radiated but in the

power that hits the floor, we need to use equation 11.21 of Griffiths, the time averaged Poynting vector
in spherical coordinates centered at the equilibrium position of the charge,〈

~S
〉

=
µ0p

2
0ω

4

32π2c

sin2 θ

r2
r̂. (46)

Now, the surface we are interested in is the floor. To find the power per unit area through some point
on the surface at a distance R from the point directly below the charge, we simply need to evaluate the
Poynting vector at r, θ such that sin θ = R

r , and R2 + h2 = r2 and dot it with the normal to the floor,
which is in the −ẑ direction. Thus,

If (R) = −µ0p
2
0ω

4

32π2c

sin2 θ

r2
r̂ · ẑ =

µ0p
2
0ω

4

32π2c

sin2 θ cos θ

r2
=

µ0q
2d2ω4

32π2c

R2h

(R2 + h2)5/2
. (47)

The radiation is most intense at the point where,

dIf

dR
= 0⇒ R =

√
2/3h. (48)

(b) We integrate the power over the floor,

P =
∫

If (R)2πRdR =
µ0(qd)2ω4

16πc

∫ ∞

0

R3h

(R2 + h2)5/2
dR =

µ0(qd)2ω4

16πc

2
3

=
µ0(qd)2ω4

24πc
, (49)

which is exactly half the total power radiated (makes sense, the rest should hit the cieling).

13. Griffiths 11.22

(a) We can use methods very similar to the previous problem. As we are given the total power and the fre-
quency of radiation, this is enough information to determine the magnetic dipole moment of the oscillating
dipole Griffiths 11.40,

P =
µ0m

2
0ω

4

12πc3
⇒ m2

0 =
24πPc3

µ0ω4
. (50)

The only difference from the previous problem is that here, we are interested only in the magnitude of
the radiation and not its direction, so we don’t dot the Poynting vector with ẑ and instead just consider
its magnitude, which is Griffiths 11.39,

I(R) =
µ0m

2
0ω

4

32π2c3

sin2 θ

r2
=

3P

8π

R2

(R2 + h2)2
. (51)

(b) Because this intensity drops to zero as R → 0, the engineer made a completely useless measurement. It
would be much more sensible to measure the intensity at its peak, which occurs at,

0 =
dI(R)
dR

⇒ R = h. (52)

At this location, the intensity is I(h) = 3P
8π

h2

(2h2)2 = 3P
32πh2 .
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(c) Plugging in the numbers,

Imax =
3× 35× 103

32π × (200)2
= 0.026W/m2 = 2.6µW/cm2. (53)

14. Griffiths 11.25

We can think of the particle and its image charge as a dipole with dipole moment given by p(t) = 2qz(t), where
z(t) is the distance between the dipole and the conducting surface. Now, the force on the charge due to its
image is just,

F = mz̈ = − 1
4πε0

q2

4z2
= −µ0c

2q2

16πz2
⇒ p̈ = 2qz̈ = −µ0c

2q3

8πz2
. (54)

The total power radiated can now be found by using equation 11.60 of Griffiths,

P =
µ0p̈

2

6πc
=

(
µ0cq

2

4π

)3 1
6m2z4

. (55)

15. Consider a pair of coaxial cables, the first filled with a dielectric ε1, the second filled with a dielectric ε2, both
with inner radius a and outer radius b.

(a) What is the capacitance per unit length of each cable? Suppose we put free charge Q on a length l of the
inner conductor. Then,∫

~D · d~a = εE2πsl = Q⇒ E =
Q

2πεsl
⇒ V = −

∫ a

b

~E · d~l =
Q

2πεl
ln

(
b

a

)
. (56)

Thus, the capacitance per unit length is just,

C/l =
Q

V l
=

2πε

ln
(

b
a

) . (57)

(b) What is the inductance per unit length of each cable? It turns out that the easiest way to do this is to
use a trick outlined in example 7.3 of Griffiths. The point of that section was to note that the inductance
could also be computed using the fact that the energy stored in the magnetic fields of an inductor is 1

2LI2.
However, as we know the magnetic field in the coaxial cable, ~B = µI

2πs φ̂, we can compute this energy
directly by integrating the energy density 1

2µB2 over all space to find W/l = µI2

4π ln
(

b
a

)
. Thus, comparing

with 1
2LI2 we have,

L/l =
µ

2π
ln

(
b

a

)
. (58)

(c) Suppose the two cables are connected at a junction. If a TEM wave is sent through this junction, what
fraction of the power of the wave is transmitted? This is a bit of a trick question. Essentially, as TEM
modes have the same dispersion relation as flat space modes, and as the relation between the magnetic
and electric fields are also the same, applying the boundary conditions of Griffiths 9.74 on passage between
the two cables yields the same result as the flat space plane-wave. We find, just as in that case, that for
normal incidence,

T =
4n1n2

(n1 + n2)2
. (59)

where ni =
√

εi

ε0
.

16. Suppose we have two infinite grounded conducting plates parallel to the xz plane, one at y = 0 and the other at
y = a. Close off the left end (at x = 0) by an infinite metal strip which is insulated from the other conducting
plates. Consider a confined TEM mode propagating in the z direction in this “waveslot” and describe, up to
a multiplicative constant, its electric field profile at z = t = 0.
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The point here is just that for a TEM mode, the electric field profile at fixed z and t is just a solution to the
2D Laplace equation in the directions transverse to the direction of propagation (x and y) with the boundary
conditions specified as above. In particular, these boundary conditions are precisely those solved in Example
3.3 of Griffiths. I will refer you to that section, as the answer is just ~E(x, y) = −∇V (x, y) with V (x, y) given
by Griffiths 3.36.
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